满分5 > 初中数学试题 >

如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高为18米,当洪水泛滥到跨度...

如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,试通过计算说明是否需要采取紧急措施?

manfen5.com 满分网
连接OA′,OA.设圆的半径是R,则ON=R-4,OM=R-18.根据垂径定理求得AM的长,在直角三角形AOM中,根据勾股定理求得R的值,在直角三角形A′ON中,根据勾股定理求得A′N的值,再根据垂径定理求得A′B′的长,从而作出判断. 【解析】 连接OA′,OA.设圆的半径是R米,则ON=(R-4)米,OM=(R-18)米. 根据垂径定理,得AM=AB=30米, 在直角三角形AOM中, ∵AO=R米,AM=30米,OM=(R-18)米, 根据勾股定理,得:R2=(R-18)2+900, 解得:R=34. 在直角三角形A′ON中,根据勾股定理得A′N==16米. 根据垂径定理,得:A′B′=2A′N=32>30. ∴不用采取紧急措施.
复制答案
考点分析:
相关试题推荐
某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:
x(元/个)3050
y(个)190150
(1)求y与x之间的函数关系式;
(2)若该商品的销售单价在45元~80元之间浮动,
①销售单价定为多少元时,销售利润最大?此时销售量为多少?
②商场想要在这段时间内获得4 550元的销售利润,销售单价应定为多少元?
查看答案
如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.
(1)求证:CE是⊙O的切线.
(2)若FC∥AB,求证:四边形AOCF是菱形.

manfen5.com 满分网 查看答案
某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:
manfen5.com 满分网
请根据以上信息,解答下列问题:
(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?
(2)求这次调查的男观众人数,并补全条形统计图.
(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?
查看答案
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
解不等式组:manfen5.com 满分网,并把解集表示在数轴上.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.