满分5 > 初中数学试题 >

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,...

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=1,CD=2,试求四边形AEMF的面积.

manfen5.com 满分网
(1)根据折叠的性质知∠BAD=∠EAB,∠DAC=∠CAF,即∠EAF=2∠BAC=90°;而∠E=∠ADB=∠F=∠ADC=90°,由此可证得四边形AEMF是矩形;而AE=AF=AD,所以四边形AEMF是正方形; (2)欲求正方形的面积,需求出正方形的边长,可设正方形的边长为x;由折叠的性质知BE=BD,CD=CF,即可用x表示出BM、MC的长,进而可在Rt△BMC中,由勾股定理求得正方形的边长,即可得到正方形的面积. 【解析】 (1)∵AD⊥BC, △AEB是由△ADB折叠所得, ∴∠1=∠3,∠E=∠ADB=90°,BE=BD,AE=AD. 又∵△AFC是由△ADC折叠所得, ∴∠2=∠4,∠F=∠ADC=90°,FC=CD,AF=AD. ∴AE=AF.(2分) 又∵∠1+∠2=45°, ∴∠3+∠4=45°. ∴∠EAF=90°.(3分) ∴四边形AEMF是正方形.(5分) (2)方法一:设正方形AEMF的边长为x; 根据题意知:BE=BD,CF=CD, ∴BM=x-1;CM=x-2.(7分) 在Rt△BMC中,由勾股定理得:BC2=CM2+BM2 ∴(x-1)2+(x-2)2=9, x2-3x-2=0, 解之得:(舍去). ∴.(10分) 方法二:设:AD=x ∴= ∴S五边形AEBCF=2S△ABC=3x(7分) ∵ 且S正方形AEMF=S五边形AEBCF+S△BMC, ∴即x2-3x-2=0, 解之得:,(舍去), ∴.(10分)
复制答案
考点分析:
相关试题推荐
如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,manfen5.com 满分网连接BC.
(1)求证:四边形ABCD是菱形;
(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2-7x+12=0的两根,求AB的长以及菱形ABCD的面积;
(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为manfen5.com 满分网
查看答案
已知点A(2,6)、B(3,4)在某个反比例函数的图象上.
(1)求此反比例函数的解析式;
(2)若直线y=mx与线段AB相交,求m的取值范围.
查看答案
manfen5.com 满分网如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=manfen5.com 满分网(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
查看答案
画出图中三棱柱的三视图.
manfen5.com 满分网
查看答案
甲楼在乙楼的南面,它们的高AB=CD=20米,该地区冬天的阳光与水平面的夹角为30度.
(1)若两楼相距20米,则甲楼的影子落在乙楼上有多高?
(2)要使甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.