(1)于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长;
(2)连接OA、OC、0B,利用切线长定理即可得到∠O=∠AOB,根据四边形的内角和可得∠AOB+∠P=180°,进而求出∠O的度数.
【解析】
(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10+10=20;
∴△PDE的周长为20;
(2)连接OA、OC、0B,
∵OA⊥PA,OB⊥PB,OC⊥DE,
∴∠DAO=∠EBO=90°,
∴∠P+∠AOB=180°,
∴∠AOB=180°-50°=130°
∵∠AOD=∠DOC,∠COE=∠BOE,
∴∠DOE=∠AOB=×130°=65°.