如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求直线AB的解析式;
(2)当点P运动到点(
,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于
?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.
查看答案
图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)画一个底边为4,面积为8的等腰三角形;
(2)画一个面积为10的等腰直角三角形;
(3)画一个一边长为2
,面积为6的等腰三角形.
查看答案
某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系.
结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标和AB所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?
查看答案
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案