满分5 > 初中数学试题 >

如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分...

如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE、BN于点F、C,过顶C作品AM的垂线CD,垂足为D.若CD=CF,求manfen5.com 满分网的值.
manfen5.com 满分网
由题中条件可得Rt△AFB∽Rt△ABC,设CF=m,AF=n,根据相似三角形的对应边成比例可得m、n之间的关系,再由Rt△AFE∽Rt△CFB,即可得出AE与AD的关系. 【解析】 如图,设CF=m,AF=n, ∵AB⊥BC,BF⊥AC, ∴∠ABF+∠CBF=90°,∠ABF+∠BAF=90°, ∴∠CBF=∠BAF,又∠ABC=∠BFC=90°, ∴Rt△AFB∽Rt△ABC, ∴,又FC=CD=AB=m, ∴m2=n(n+m), 即, ∴或(舍去), 又Rt△AFE∽Rt△CFB,, 即. 故答案为:.
复制答案
考点分析:
相关试题推荐
已知:抛物线y=-x2+(m+3)x-m-2与x轴交于A、B两点,与y轴交于C点.
(1)求m的取值范围;
(2)若m>0,直线y=kx-1经过点A,与y轴交于点D,且AD•BD=2manfen5.com 满分网,求抛物线的解析式;
(3)在(2)的条件下:若A点在B点的左侧,P为所得的抛物线的顶点,PH⊥AB,H为垂足,连接PA,直线y=kx-1交x轴于M,若以O,D,M为顶点的三角形与与△HPA相似,请直接写出所有符合条件的M点的坐标.
查看答案
已知实数x、y、z满足x+y=4及xy=z2+4,求x+2y+3z的值.
查看答案
已知a,b,c是实数,且a=2b+manfen5.com 满分网,ab+manfen5.com 满分网c2+manfen5.com 满分网=0,求manfen5.com 满分网-c的值.
查看答案
书架上有两套两样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是    查看答案
已知manfen5.com 满分网manfen5.com 满分网是同类根式,则a+b的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.