如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ的长为l,点P的横坐标为x.
(1)求二次函数的解析式;
(2)求l与x之间的函数关系式,并求出l的取值范围;
(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
查看答案
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值.
查看答案
如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.
(1)求直线AB的解析式;
(2)过原点O的直线把△ABO分成面积相等的两部分,直接写出这条直线的解析式.
查看答案
为了掌握八年级期末数学考试卷(满分120分)的命题质量与难度系数,备课组教师随机选取40份试卷进行抽样调查,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合计 | | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=______,b=______,c=______.
(2)已知全校有50个班级(平均每班40人),若108分及以上为优秀,请你预计用这份模拟卷考试优秀的人数约为______个.
(3)补充完整频数分布直方图.
查看答案
已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)四边形ABFC是什么四边形,并说明你的理由.
查看答案