满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点...

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网
(1)通过一次函数可求出A、B两点的坐标及线段的长,再在Rt△AOP利用勾股定理可求得当PB=PA时k的值,再与圆的半径相比较,即可得出⊙P与x轴的位置关系. (2)根据正三角形的性质,分两种情况讨论, ①当圆心P在线段OB上时,②当圆心P在线段OB的延长线上时,从而求得k的值. 【解析】 (1)⊙P与x轴相切,(1分) ∵直线y=-2x-8与x轴交于A(-4,0),与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k. ∵在Rt△AOP中,k2+42=(8+k)2 ∴k=-3,(2分) ∴OP等于⊙P的半径. ∴⊙P与x轴相切.(1分) (2)设⊙P1与直线l交于C,D两点,连接P1C,P1D, 当圆心P1在线段OB上时,作P1E⊥CD于E, ∵△P1CD为正三角形, ∴DE=CD=,P1D=3. ∴P1E=. ∵∠AOB=∠P1EB=90°,∠ABO=∠P1BE, ∴△AOB∽△P1EB. ∴,即, ∴.(2分) ∴P1O=BO-BP1=8-. ∴P1(0,-8). ∴k=-8.(2分) 当圆心P2在线段OB延长线上时,同理可得P2(0,--8). ∴k=--8.(2分) ∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
复制答案
考点分析:
相关试题推荐
小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.
(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;
(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;
(3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.
manfen5.com 满分网
查看答案
如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.
(1)当点P与点C关于AB对称时,求CP的长;
(2)当点P运动到弧AB的中点时,求CP的长;
(3)点P在弧AB上运动时,求CP的长的取值范围.

manfen5.com 满分网 查看答案
已知:关于x的一元二次方程x2-2(2m-3)x+4m2-14m+8=0,
(1)若m>0,求证:方程有两个不相等的实数根;
(2)若12<m<40的整数,且方程有两个整数根,求m的值.
查看答案
若关于x的方程(x-2)(x2-4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是    查看答案
在正方形ABCD中,点E是BC上的一定点,且BE=10,EC=14,点P是BD上的一动点,则PE+PC的最小值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.