满分5 > 初中数学试题 >

将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90...

将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
manfen5.com 满分网
(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了; (2)解题思路和辅助线的作法与(1)完全一样; (3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF. (1)证明:连接BF(如图①), ∵△ABC≌△DBE(已知), ∴BC=BE,AC=DE. ∵∠ACB=∠DEB=90°, ∴∠BCF=∠BEF=90°. ∵BF=BF, ∴Rt△BFC≌Rt△BFE. ∴CF=EF. 又∵AF+CF=AC, ∴AF+EF=DE. (2)【解析】 画出正确图形如图② ∴(1)中的结论AF+EF=DE仍然成立; (3)不成立. 证明:连接BF, ∵△ABC≌△DBE, ∴BC=BE, ∵∠ACB=∠DEB=90°, ∴△BCF和△BEF是直角三角形, 在Rt△BCF和Rt△BEF中, , ∴△BCF≌△BEF, ∴CF=EF; ∵△ABC≌△DBE, ∴AC=DE, ∴AF=AC+FC=DE+EF.
复制答案
考点分析:
相关试题推荐
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
manfen5.com 满分网
查看答案
如图,学校准备在图书馆后面的场地边建一个面积为60平方米的长方形自行车棚ABCD,一边利用图书馆的后墙,设自行车棚靠墙的一边AD的长是x米(6≤x≤10).
(1)若要利用已有总长为26米的铁围栏作为自行车棚的围栏,则x的值是多少;
(2)若AB=y米,求y的取值范围.

manfen5.com 满分网 查看答案
如图,⊙I为△ABC的内切圆,AB=9,BC=8,AC=10,点D、E分别为AB、AC上的点,且DE为⊙I的切线,则△ADE的周长为   
manfen5.com 满分网 查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
①画出△OAB向下平移3个单位后的△O1A1B1
②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;
(2)求恰好选中医生甲和护士A的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.