满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,...

如图,已知抛物线y=manfen5.com 满分网x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值; (2)根据抛物线的解析式可得出C点的坐标,易证得△ABC是直角三角形,则EF⊥BC;△CEF和△BEF同高,则面积比等于底边比,由此可得出CF=2BF;易证得△BEF∽△BAC,根据相似三角形的性质,即可求得BE、AB的比例关系,由此可求出E点坐标; (3)PQ的长实际是直线AC与抛物线的函数值的差,可设P点横坐标为m,用m表示出P、Q的纵坐标,然后可得出PQ的长与m的函数关系式,根据所得函数的性质即可求出PQ最大时,m的值,也就能求出此时P点的坐标. 【解析】 (1)由题意,得:, 解得; ∴y=x2+x-2; (2)由(1)知:C(0,-2); 则AC2=AO2+OC2=20,BC2=BO2+OC2=5; 而AB2=25=AC2+BC2; ∴△ACB是直角三角形,且∠ACB=90°; ∵EF∥AC, ∴EF⊥BC; ∵S△CEF=2S△BEF, ∴CF=2BF,BC=3BF; ∵EF∥AC, ∴; ∵AB=5, ∴BE=; OE=BE-OB=,故E(,0); (3)设P点坐标为(m,m2+m-2); 已知A(-4,0),C(0,-2), 设直线AC的解析式为: y=kx-2, 则有:-4k-2=0,k=-; ∴直线AC的解析式为y=-x-2; ∴Q点坐标为(m,-m-2); 则PQ=-m-2-(m2+m-2)=-m2-2m; ∴当m=-2,即P(-2,-3)时,PQ最大,且最大值为2. 故当P运动到OA垂直平分线上时,PQ的值最大,此时P(-2,-3).
复制答案
考点分析:
相关试题推荐
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
manfen5.com 满分网
查看答案
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
manfen5.com 满分网
查看答案
如图,学校准备在图书馆后面的场地边建一个面积为60平方米的长方形自行车棚ABCD,一边利用图书馆的后墙,设自行车棚靠墙的一边AD的长是x米(6≤x≤10).
(1)若要利用已有总长为26米的铁围栏作为自行车棚的围栏,则x的值是多少;
(2)若AB=y米,求y的取值范围.

manfen5.com 满分网 查看答案
如图,⊙I为△ABC的内切圆,AB=9,BC=8,AC=10,点D、E分别为AB、AC上的点,且DE为⊙I的切线,则△ADE的周长为   
manfen5.com 满分网 查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
①画出△OAB向下平移3个单位后的△O1A1B1
②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.