登录
|
注册
返回首页
联系我们
在线留言
满分5
>
初中数学试题
>
已知a、b、c均为实数,且+|b+1|+(c+3)2=0,求方程ax2+bx+c...
已知a、b、c均为实数,且
+|b+1|+(c+3)
2
=0,求方程ax
2
+bx+c=0的根.
本题要求出方程ax2+bx+c=0的根,必须先求出a、b、c的值.根据非负数的性质,带根号、绝对值、平方的数值都大于等于0,三个非负数相加和为0,则这三个数的值必都为0,由此可解出a、b、c的值,再代入方程中可解此题. 【解析】 根据分析得: a-2=0,b+1=0,c+3=0 a=2,b=-1,c=-3 方程ax2+bx+c=0 即为2x2-x-3=0 ∴x1=,x2=-1.
复制答案
考点分析:
相关试题推荐
解方程:①x
2
-4x-3=0
②(x-3)
2
+2x(x-3)=0.
查看答案
若(x
2
+y
2
)
2
-5(x
2
+y
2
)-6=0,则x
2
+y
2
=
.
查看答案
已知x
2
+3x+5的值为7,则代数式3x
2
+9x-2的值为
.
查看答案
如果2x
2
+1与4x
2
-2x-5互为相反数,则x的值为
.
查看答案
方程
化为一元二次方程的一般形式是
,它的一次项系数是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.