某商场将进价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个.
(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;
(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元;
(3)请分析并回答售价在什么范围内商场就可获得利润.
考点分析:
相关试题推荐
已知二次函数y=-
x
2-x+
.
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)所画函数图象,沿x轴方向通过怎样的平移才能使图象经过坐标原点,请直接写出平移后的函数解析式.
查看答案
如图,有一抛物线形拱桥,拱顶M距桥面1米,桥拱跨度AB=12米,拱高MN=4米.
(1)求表示该拱桥抛物线的解析式;
(2)按规定,汽车通过桥下时载货最高处与桥拱之间的距离CD不得小于0.5米.今有一宽4米,高2.5米(载货最高处与地面AB的距离)的平顶运货汽车要通过拱桥,问该汽车能否通过?为什么?
查看答案
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式及自变量x的取值范围;
(2)若墙的最大可用长度为9米,求此时自变量x的取值范围.
查看答案
已知二次函数图象与x轴交于点(2,0)、(-1,0),与y轴交点是(0,-1),求二次函数解析式,并直接写出该抛物线关于x轴对称的抛物线的解析式.
查看答案
抛物线y=x
2-2x-3与x轴交点为A,B,交y轴于点C,求△ABC的面积.
查看答案