满分5 > 初中数学试题 >

如图,直角坐标系中,A(-2,0),B(8,0),以AB为直径作半⊙P交y轴于M...

如图,直角坐标系中,A(-2,0),B(8,0),以AB为直径作半⊙P交y轴于M,以AB为一边作正方形ABCD.
(1)直接写出C、M两点的坐标.
(2)连接CM,试判断直线CM与⊙P的位置关系,并证明你的结论.

manfen5.com 满分网
(1)因为ABCD为正方形,且边长为10,所以易得C点坐标;连接PM,根据P点坐标和半径求OM可得M点坐标. (2)根据CM、PM、PC的长判定△PCM为直角三角形,得∠PMC=90°,从而判断相切.或证△PCM≌△PCB得证. 【解析】 (1)∵A(-2,0),B(8,0), ∴AB=10. ∵四边形ABCD为正方形, ∴BC=AB=10, ∴C(8,10). 连MP,PC; 在Rt△OPM中,OP=3,MP=5, ∴OM=4,即M(0,4). (2)CM与⊙P相切. 理由:Rt△CBP中,CB=10,BP=5, ∴CP2=125. △CEM中,EM=6,CE=8, ∴CM2=100. ∵100+25=125, ∴△CMP中,CM2+MP2=CP2, ∴∠CMP=90°. 即:PM⊥CM. ∴CM与⊙P相切.
复制答案
考点分析:
相关试题推荐
如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.
(1)求证:PQ是⊙O的切线;
(2)若⊙O的半径为2,manfen5.com 满分网,求弦AD的长.

manfen5.com 满分网 查看答案
如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.
(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;
(2)求阴影部分的面积(结果保留π).

manfen5.com 满分网 查看答案
袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.请用树状图或列表法说明摸到一红一白两球的概率.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

manfen5.com 满分网 查看答案
一只不透明的袋子中装有4个相同小球,分别标有不等的自然数2、3、4、x,小丽每次从袋中同时摸出2个小球,并计算摸出的这2个小球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:
摸球总次数1020306090120180240330450
“和为7”出现的频数19142426375882109150
“和为7”出现的频率0.100.450.470.400.290.310.320.340.330.33
(1)如果实验继续进行下去,出现“和为7”的频率将稳定在它的概率附近.试估计出现“和为7”的概率;     
(2)根据(1)中结论,求出自然数x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.