满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AC=4,BC=5,D是BC边上一点,CD...

如图,在Rt△ABC中,∠C=90°,AC=4,BC=5,D是BC边上一点,CD=3,点P在边AC上(点P与A、C不重合),过点P作PE∥BC,交AD于点E.
(1)设AP=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(2)当以PE为半径的⊙E与DB为半径的⊙D外切时,求∠DPE的正切值;
(3)将△ABD沿直线AD翻折,得到△AB′D,连接B′C.如果∠ACE=∠BCB′,求AP的值.
manfen5.com 满分网
(1)首先根据勾股定理求得AD的长,又由平行线分线段成比例定理求得DE的长,则可得y与x的关系; (2)因为当以PE为半径的⊙E与DB为半径的⊙D外切时,有DE=PE+BD,所以可以求得x的值,即可求得PC的长,则在Rt△PCD中,根据三角函数的性质即可求得tan∠DPE的值; (3)首先由有两角对应相等的三角形相似,即可证得:△ACD∽△BFD与△ACE∽△BCB′,又由相似三角形对应边成比例,即可求得AP的值. 【解析】 (1)∵在Rt△ABC中,AC=4,CD=3, ∴AD=5, ∵PE∥BC, ∴, ∴, ∴AE=x, ∴DE=5-x, 即y=5-x,(0<x<4); (2)当以PE为半径的⊙E与DB为半径的⊙D外切时,有DE=PE+BD,即5-x=x+2, 解之得x=, ∴PC=, ∵PE∥BC, ∴∠DPE=∠PDC, 在Rt△PCD中, tan∠PDC===; ∴tan∠DPE=; (3)延长AD交BB′于F,则AF⊥BB′,连接CE, 则∠ACD=∠BFD, ∵∠ADC=∠FDB, ∴∠CAD=∠FBD, ∴△ACD∽△BFD, ∴BF=, ∴BB′=, ∵∠ACE=∠BCB′,∠CAE=∠CBB′, ∴△ACE∽△BCB′, ∴AE=, ∴t=AP=.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

manfen5.com 满分网 查看答案
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧manfen5.com 满分网上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.
(1)求证:AC丄BH;
(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.

manfen5.com 满分网 查看答案
某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少时,每日获得的利润为1750元?
(2)当日产量为多少时,可获得最大利润?最大利润是多少?
查看答案
在一次课外实践活动中,同学们要知道校园内A、B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=60°,请计算A、B两处之间的距离.

manfen5.com 满分网 查看答案
2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.