满分5 >
初中数学试题 >
已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有...
已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有( )
A.最小值-3
B.最大值-3
C.最小值2
D.最大值2
考点分析:
相关试题推荐
在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为( )
A.7sin35°
B.
C.7cos35°
D.7tan35°
查看答案
在等腰直角三角形ABC中,∠C=90°,则sinA等于( )
A.
B.
C.
D.1
查看答案
如图,在Rt△ABC中,∠C=90°,AC=4,BC=5,D是BC边上一点,CD=3,点P在边AC上(点P与A、C不重合),过点P作PE∥BC,交AD于点E.
(1)设AP=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(2)当以PE为半径的⊙E与DB为半径的⊙D外切时,求∠DPE的正切值;
(3)将△ABD沿直线AD翻折,得到△AB′D,连接B′C.如果∠ACE=∠BCB′,求AP的值.
查看答案
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
查看答案
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧
上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.
(1)求证:AC丄BH;
(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.
查看答案