满分5 > 初中数学试题 >

用配方法解方程x2-2x-5=0时,原方程应变形为( ) A.(x+1)2=6 ...

用配方法解方程x2-2x-5=0时,原方程应变形为( )
A.(x+1)2=6
B.(x+2)2=9
C.(x-1)2=6
D.(x-2)2=9
配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1; (3)等式两边同时加上一次项系数一半的平方. 【解析】 由原方程移项,得 x2-2x=5, 方程的两边同时加上一次项系数-2的一半的平方1,得 x2-2x+1=6 ∴(x-1)2=6. 故选C.
复制答案
考点分析:
相关试题推荐
下列根式中,最简二次根式是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
下列计算正确的是( )
A.a3•a2=a6
B.(π-3.14)=1
C.(manfen5.com 满分网-1=-2
D.manfen5.com 满分网=±3
查看答案
如果3是一元二次方程x2=c的一个根,那么常数c是( )
A.9
B.3
C.-3
D.-9
查看答案
如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
manfen5.com 满分网
查看答案
有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?
(3)若OA所在的直线向上平移且与⊙O无公共点,请你根据原题中的条件完成图4,并判断结论是否还成立?(只需交待判断)
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.