满分5 > 初中数学试题 >

如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30度. ...

如图,已知在⊙O中,AB=4manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30度.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

manfen5.com 满分网
(1)先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为120度,在Rt△ABF中根据勾股定理可求出半径的长,利用扇形的面积公式即可求解; (2)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得圆锥的底面圆的半径. 【解析】 (1)法一:过O作OE⊥AB于E,则 BF=AB=2. 在Rt△AEO中,∠BAC=30°,cos30°=. ∴OA===4. 又∵OA=OB, ∴∠ABO=30度. ∴∠BOC=60度. ∵AC⊥BD,∴. ∴∠COD=∠BOC=60度. ∴∠BOD=120度. ∴S阴影==. 法二:连接AD. ∵AC⊥BD,AC是直径, ∴AC垂直平分BD. ∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°, ∴∠BOD=120度. ∵BF=AB=2,sin60°=, AF=AB•sin60°=4×=6. ∴OB2=BF2+OF2.即. ∴OB=4. ∴S阴影=S圆=. 法三:连接BC. ∵AC为⊙O的直径, ∴∠ABC=90度. ∵AB=4, ∴. ∵∠A=30°,AC⊥BD, ∴∠BOC=60°,∴∠BOD=120度. ∴S阴影=π•OA2=×42•π=. 以下同法一; (2)设圆锥的底面圆的半径为r,则周长为2πr, ∴. ∴.
复制答案
考点分析:
相关试题推荐
如图:两个同心圆的半径所截得的弧长AB=6πcm,CD=10πcm,且AC=12cm.
(1)求两圆的半径长.
(2)阴影部分的面积是多少?

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
如图:等腰△ABC,以腰AB为直径作⊙O交底边BC于P,PE⊥AC,垂足为E.
求证:PE是⊙O的切线.

manfen5.com 满分网 查看答案
如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.

manfen5.com 满分网 查看答案
已知⊙O中的弦AB=CD,求证:AD=BC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.