某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
考点分析:
相关试题推荐
已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:AC⊥BD;②AC平分对角线BD;
③AD∥BC;④∠OAD=∠ODA.
请你选其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论,编拟一个真命题,并证明.
查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
为了节约资源,保护环境,某中学课外实践小组的同学,利用业余时间对本城区居民家庭使用超薄塑料袋的情况进行了抽样调查.统计情况如图所示,其中A为“不再使用”,B为“明显减少了使用量”,C为“没有明显变化”
(1)本次抽样的样本容量是______;
(2)图中a=______(户),c=______(户);
(3)若被调查的家庭占全城区家庭数的10%,则该城区不再使用超薄塑料袋的家庭数约为______.
查看答案
如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S
1为1,按上述方法所作的正方形的面积依次为S
2,S
3,…S
n(n为正整数),那么第n个正方形S
n的面积=
.
查看答案
如图,⊙O是△ABC的内切圆,切点为D、E、F,若∠A=100°,∠C=30°,则∠DFE的度数是
.
查看答案