如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.
(1)求证:AC平分∠DAB;
(2)若AC=8,AC:CD=2:1,试求⊙O的半径.
查看答案
上海世博会期间,某商店出售一种海宝毛绒玩具,每件获利60元,一天可售出20件,经市场调查发现每降价1元可多售出2件,设降价x元,商店每天获利y元.
(1)求y与x的函数关系式.
(2)当降价多少元时,商店可获最大利润?最大利润是多少?
查看答案
农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形羊圈的面积;
(2)请你判断他的设计方案是否使矩形羊圈的面积最大?如果不是最大,应怎样设计?请说明理由.
查看答案
已知二次函数y=-2x
2+4x+6.
(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标,并在下面的坐标系中画出这个函数的大致图象;
(2)利用函数图象写出:当y>0时x的取值范围?
查看答案
如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长?
查看答案