连接AB,由于∠AOB是直角,根据圆周角定理可知AB必为⊙C的直径,即C是AB的中点,已知A点坐标,关键是求出B点的坐标.由图知:四边形ABMO是圆的内接四边形,因此内对角∠BAO、∠BMO互补,由此求得∠BAO的度数,进而可在Rt△BAO中,根据直角三角形的性质得到OB的长,从而确定点B的坐标,由此得解.
【解析】
连接AB.
∵∠AOB=90°,
∴AB是⊙O的直径,C是线段AB的中点;
由于四边形ABMO内接于⊙O,
∴∠BAO=180°-∠BMO=60°.
在Rt△ABO中,OA=4,∠BAO=60°,则OB=4.
所以B(-4,0).
∵A(0,4),
∴C(-2,2).