设两圆的半径分别是R,r(R>r),将⊙O2移动到圆心与O1重合,连接O1B,O1C,得出阴影部分的面积等于此时两圆组成的圆环的面积是πR2-πr2,根据垂径定理求出BC,根据勾股定理求出R2-r2的值,代入求出即可.
【解析】
设两圆的半径分别是R,r(R>r),
∵将⊙O2移动到圆心与O1重合,连接O1B,O1C,
∴S阴影=πR2-πr2,
∵AB∥O1O2,
∵AB是小圆的切线,切点是C,
∴∠O1CB=90°,
∵O1C过圆心O1,
∴AC=BC=AB=6cm,
由勾股定理得:-=BC2=36cm2,
即R2-r2=36cm,
∴S阴影=π(R2-r2)=36πcm2,
故选A.