满分5 > 初中数学试题 >

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两...

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求解.过C作CH⊥AB于H,在直角三角形ACH中,根据半径及C点的坐标即可用三角形函数求出∠ACB的值. (2)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标. (3)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式. (4)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点. 【解析】 (1)作CH⊥x轴,H为垂足, ∵CH=1,半径CB=2, ∵∠BCH=60°, ∴∠ACB=120°. (2)∵CH=1,半径CB=2 ∴HB=, 故A(1-,0),B(1+,0). (3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3) 设抛物线解析式y=a(x-1)2+3, 把点B(1+,0)代入上式,解得a=-1; ∴y=-x2+2x+2. (4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ∴PC∥OD且PC=OD. ∵PC∥y轴, ∴点D在y轴上. 又∵PC=2, ∴OD=2,即D(0,2). 又D(0,2)满足y=-x2+2x+2, ∴点D在抛物线上 所以存在D(0,2)使线段OP与CD互相平分.
复制答案
考点分析:
相关试题推荐
已知:直线y=-2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图1,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,设l与y轴交点为C,点P在l上运动.
(1)当点P运动到圆上时,求此时点P的坐标
(2)如图2,当点P的坐标为(4,3)时,连接OP,作AM⊥OP于M,求OP的长和AM的长
(3)在(2)条件下,试判断直线OP与⊙A的位置关系,并说明理由.
manfen5.com 满分网
查看答案
某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案
如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.

manfen5.com 满分网 查看答案
如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D.点E在⊙O上. 
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求tan∠AEB的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.