连CF,根据等腰直角三角形的性质得CF=FA,CF⊥AB,CF平分∠ACB,则∠FCE=∠A=45°,∠CFA=90°,根据等角的余角相等得到∠AFD=∠CFE,根据全等三角形的判定得△AFD≌△CFE,则FD=FE,得到△DFE是等腰直角三角形;四边形CDFE的面积=△CDF的面积+△CFE的面积=△CDF的面积+△AFD的面积=△CAF的面积=×△ABC的面积=×8×8=16;当FD⊥AC时,四边形CDFE为正方形,此时△CDE面积的最大值为×16=8.
【解析】
连CF,如图,
∵F点是等腰Rt△ABC边AB中点,
∴CF=FA,CF⊥AB,CF平分∠ACB,
∴∠FCE=∠A=45°,∠CFA=90°,
又∵∠DFE=90°,
∴∠AFD=∠CFE,
在△AFD和△CFE中
∴△AFD≌△CFE,
∴FD=FE,
∴△DFE是等腰直角三角形;
∵四边形CDFE的面积=△CDF的面积+△CFE的面积=△CDF的面积+△AFD的面积=△CAF的面积=×△ABC的面积=××8×8=16;
当FD⊥AC时,四边形CDFE为正方形,此时△CDE面积的最大值为×16=8.
故选D.