满分5 > 初中数学试题 >

如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线. (1)...

manfen5.com 满分网如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.
(1)求证:AC=AD;
(2)若∠B=60°,求证:四边形ABCD是菱形.
(1)根据角平分线的性质得出∠FAD=∠B,以及AD∥BC,再利用∠D=∠ACD,证明AC=AD; (2)根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出. 证明:(1)∵AB=AC, ∴∠B=∠BCA, ∵AD平分∠FAC, ∴∠FAD=∠DAC=∠FAC, ∵∠B+∠BCA=∠FAC, ∴∠B=∠FAC, ∴∠B=∠FAD, ∴AD∥BC, ∴∠D=∠DCE, ∵CD平分∠ACE, ∴∠ACD=∠DCE, ∴∠D=∠ACD, ∴AC=AD; (2)∵∠B=60°,AB=AC, ∴△ABC为等边三角形, ∴AB=BC, ∴∠ACB=60°, ∠FAC=∠ACE=120°, ∴∠BAD=∠BCD=120°, ∴∠B=∠D=60°, ∴四边形ABCD是平行四边形, ∵AB=BC, ∴平行四边形ABCD是菱形.
复制答案
考点分析:
相关试题推荐
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.

manfen5.com 满分网 查看答案
如图,△ABC中,∠BAC为直角,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:四边形ADCE是菱形;
(2)若AB=AO,求tan∠OAD的值.

manfen5.com 满分网 查看答案
如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为   
manfen5.com 满分网 查看答案
如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200m、120m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3xm、2xm.
(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的manfen5.com 满分网时,求横、纵通道的宽分别是多少?
(2)如果花坛绿化造价为每平方米3元,通道总造价为3168x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.
(以下数据可供参考:852=7225,862=7396,872=7569)

manfen5.com 满分网 查看答案
如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.
(1)求证:△ADF≌△ABE;
(2)小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=manfen5.com 满分网AE.请你说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.