如图所示,直线AB、CD相交于点P,点Q、E在AB上,已知:PQ=8,QE=3,sin∠BPC=
,O为射线QA上的一动点,⊙O的半径为
,开始时,O点与Q点重合,⊙O沿射线QA方向移动.
(1)当圆心O运动到与点E重合时,判断此时⊙O与直线CD的位置关系,交说明你的理由;
(2)设移动后⊙O与直线CD交于点M、N,若△OMN是直角三角形,求圆心O移动的距离.
考点分析:
相关试题推荐
在△ABC中,以AD为直径的圆与△ABC的边BC相切于点D,交AB、AC于点E、F.
(1)说明:∠BAC+∠EDF=180°;
(2)若BD=CD,探索:∠EDF与∠C之间有何数量关系?说明你的理由.
查看答案
如图,已知CD是⊙O的直径,弦AB⊥CD,垂足为点M,点P是
上一点,且∠BPC=60°.
(1)判断△ABC的形状,并说明你的理由;
(2)若DM=2,求⊙O的半径.
查看答案
如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).
(参考数据:sin67.4°≈
,cos67.4°≈
,tan67.4°≈
)
查看答案
如图,在△ABC中,AB=AC,点E,F分别在AC,AB上,EF∥BC,将△AEF向上翻折,得到△A′EF,再展开.
(1)求证:四边形AEA′F是菱形;
(2)直接写出当等腰△ABC满足什么条件时,四边形AEA′F将变成正方形?
(3)当点A′恰好落在BC上时,直接写出EF与BC的数量关系.
查看答案
学校计划用地面砖铺设教学楼前矩形广场的地面ABCD已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.为了美观,要求四角的小正方形的边长不得超过30米.要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
查看答案