如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A
1,△A
1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.
考点分析:
相关试题推荐
已知:如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:
.
查看答案
已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=
.
(1)求证:AM•MB=EM•MC;
(2)求EM的长.
查看答案
如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O
1,⊙O
2.
(1)求⊙O
1的半径;
(2)求图中阴影部分的面积.
查看答案
如图,抛物线y=-x
2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
查看答案
如图,AB是⊙O的直径,C是
的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______.
查看答案