满分5 > 初中数学试题 >

如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的...

如图,二次函数的图象经过点D(0,manfen5.com 满分网),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)已知了顶点的横坐标,可用顶点式来设二次函数的解析式如:y=a(x-4)2+k,根据二次函数过点(0,),可得出=16a+k;由于A、B关于x=4对称,且AB=6,不难得出A、B的坐标为(1,0),(7,0),可将它们的坐标代入解析式中即可求出a、k的值. (2)本题的关键是确定P的位置,由于对称轴垂直平分AB,因此P不论在对称轴的什么位置都有PA=PB,连接DB,如果P是交点时,PA+PD的长就是BD的长,两点之间线段最短,因此要想PA+PD最小,P必为DB与对称轴的交点.可根据B、D的坐标求出BD所在直线的解析式,然后求出与抛物线对称轴的交点.即可得出P点的坐标. (3)由于三角形ABC是等腰三角形,要想使QAB与三角形ABC相似,三角形QAB必须为等腰三角形.要分两种情况进行讨论: ①当Q在x轴下方时,Q,C重合,Q点的坐标就是C点的坐标. ②当Q在x轴上方时,应该有两个符合条件的点,抛物线的对称轴左右两侧各一个,且这两点关于抛物线的对称轴相对称.因此只需求出一点的坐标即可.以AQ=AB为例:可过Q作x轴的垂线,在构建的直角三角形中,根据BQ即AB的长以及∠QBx的度数来求出Q的坐标.然后根据对称性求出另外一点Q的坐标. 【解析】 (1)设二次函数的解析式为:y=a(x-h)2+k ∵顶点C的横坐标为4,且过点(0,) ∴y=a(x-4)2+k,=16a+k① 又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k② 由①②解得a=,k=- ∴二次函数的解析式为:y=(x-4)2- (2)∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P 设直线x=4与x轴交于点M ∵PM∥OD, ∴∠BPM=∠BDO, 又∵∠PBM=∠DBO ∴△BPM∽△BDO ∴ ∴ ∴点P的坐标为(4,) (3)由(1)知点C(4,), 又∵AM=3, ∴在Rt△AMC中,cot∠ACM=, ∴∠ACM=60°, ∵AC=BC, ∴∠ACB=120° ①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有 BQ=6,∠ABQ=120°,则∠QBN=60° ∴QN=3,BN=3,ON=10, 此时点Q(10,), 如果AB=AQ,由对称性知Q(-2,) ②当点Q在x轴下方时,△QAB就是△ACB, 此时点Q的坐标是(4,), 经检验,点(10,)与(-2,)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(-2,)或(4,).
复制答案
考点分析:
相关试题推荐
如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=manfen5.com 满分网,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

manfen5.com 满分网 查看答案
已知:关于x的方程x2-(k+1)x+manfen5.com 满分网k2+1=0的两根是一个矩形两邻边的长.
(1)k取何值时,方程有两个实数根;
(2)当矩形的对角线长为manfen5.com 满分网时,求k的值.
查看答案
如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,E为AC延长线上一点,ED⊥AB于F.
(1)判断△DCE的形状;
(2)设⊙O的半径为1,且OF=manfen5.com 满分网,求证:△DCE≌△OCB.

manfen5.com 满分网 查看答案
已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.