满分5 > 初中数学试题 >

如图,⊙O的直径AB=4,∠ABC=30°,BC=,D是线段BC的中点. (1)...

manfen5.com 满分网如图,⊙O的直径AB=4,∠ABC=30°,BC=manfen5.com 满分网,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
(1)要求D与⊙O的位置关系,需先求OD的长,再与其半径相比较;若大于半径则在圆外,等于半径在圆上,小于半径则在圆内; (2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可. (1)【解析】 点D在⊙O上;理由如下: 设⊙O与BC交于点M,连接AM, ∵AB是直径, ∴∠AMB=90°, 在直角△ABM中,BM=AB•cos∠ABC=4×=2, ∵BC=, ∴M是BC的中点,则M与D重合. ∴点D在⊙O上; (2)证明: 连接OD,过点O作OF⊥BC于点F; ∵D是BC的中点,O是AB的中点, ∴DO是△ABC的中位线, ∴OD∥AC,则∠EDO=∠CED 又∵DE⊥AC, ∴∠EDO=90°,∠EDO=∠CED=90° ∴DE是⊙O的切线.
复制答案
考点分析:
相关试题推荐
已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC.
(1)求证:AB=AC;
(2)若PA=10,PB=5,求⊙O的半径和AC的长.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D.若∠CAB=30°,AB=30,求BD的长.

manfen5.com 满分网 查看答案
如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.
(1)求出抛物线的解析式;
(2)经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位?

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.
(1)写出A、B、D三点坐标;
(2)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.