满分5 > 初中数学试题 >

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1)求抛物线...

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-manfen5.com 满分网

manfen5.com 满分网
(1)因为抛物线经过的三点为与两坐标轴的交点,故有两种方法(1)用一般式解答,(2)用交点式(两点式)解答; (2)找到变化过程中的不变关系:△CDQ∽△CAB,根据相似三角形的性质计算; (3)因为A、C关于x=对称,所以MQ+MC的最小值即为MQ+MA的最小值,根据两点之间线段最短,A、M、Q共线时MQ+MC可取最小值. 【解析】 (1)解法一:设抛物线的解析式为 y=a(x+3)(x-4) 因为B(0,4)在抛物线上, 所以4=a(0+3)(0-4) 解得a=- 所以抛物线解析式为 y=-(x+3)(x-4)=-x2+x+4 解法二:设抛物线的解析式为y=ax2+bx+c(a≠0), 依题意得:c=4且 解得 所以所求的抛物线的解析式为y=-x2+x+4. (2)连接DQ,在Rt△AOB中,AB===5 所以AD=AB=5,AC=AO+CO=3+4=7,CD=AC-AD=7-5=2 因为BD垂直平分PQ, 所以PD=QD,PQ⊥BD, 所以∠PDB=∠QDB 因为AD=AB, 所以∠ABD=∠ADB,∠ABD=∠QDB, 所以DQ∥AB 所以∠CQD=∠CBA.∠CDQ=∠CAB, 所以△CDQ∽△CAB,= 即=,DQ= 所以AP=AD-DP=AD-DQ=5-=, t=÷1=, 所以t的值是. (3)答:对称轴上存在一点M,使MQ+MC的值最小 理由:因为抛物线的对称轴为x=-= 所以A(-3,0),C(4,0)两点关于直线x=对称 连接AQ交直线x=于点M,则MQ+MC的值最小 ∵过点Q作QE⊥x轴于E, ∴∠QED=∠BOA=90度 DQ∥AB,∠BAO=∠QDE,△DQE∽△ABO,== 即== 所以QE=,DE=, 所以OE=OD+DE=2+=, 所以Q(,) 设直线AQ的解析式为y=kx+m(k≠0) 则 由此得 所以直线AQ的解析式为y=x+ 联立 由此得 所以M(,) 则:在对称轴上存在点M(,),使MQ+MC的值最小.
复制答案
考点分析:
相关试题推荐
枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?
查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,⊙O的直径AB=4,∠ABC=30°,BC=manfen5.com 满分网,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC.
(1)求证:AB=AC;
(2)若PA=10,PB=5,求⊙O的半径和AC的长.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D.若∠CAB=30°,AB=30,求BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.