满分5 > 初中数学试题 >

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,...

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标; (2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式; (3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案. 【解析】 (1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°, ∴∠BCD=∠CAO,(1分) 又∵∠BDC=∠COA=90°,CB=AC, ∴△BCD≌△CAO,(2分) ∴BD=OC=1,CD=OA=2,(3分) ∴点B的坐标为(-3,1);(4分) (2)抛物线y=ax2+ax-2经过点B(-3,1), 则得到1=9a-3a-2,(5分) 解得a=, 所以抛物线的解析式为y=x2+x-2;(7分) (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点; 则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分) 过点P1作P1M⊥x轴, ∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC.(10分) ∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);(11分) ②若以点A为直角顶点; 则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分) 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分) ∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分) 经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.(16分)
复制答案
考点分析:
相关试题推荐
为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
查看答案
如图,某军港有一雷达站P,军舰M停泊在雷达站P的南偏东60°方向36海里处,另一艘军舰N位于军舰M的正西方向,与雷达站P相距18manfen5.com 满分网海里.求:
(1)军舰N在雷达站P的什么方向;
(2)两军舰M,N的距离.(结果保留根号)

manfen5.com 满分网 查看答案
如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,求S△BCD

manfen5.com 满分网 查看答案
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

manfen5.com 满分网 查看答案
如图,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.