满分5 > 初中数学试题 >

已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的...

已知:PA=manfen5.com 满分网,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.如图,当∠APB=45°时,求AB及PD的长.

manfen5.com 满分网
过A点作AE⊥PB于E,由∠APB=45°得△APE为等腰直角三角形,根据等腰直角三角形的性质有PE=AE=PA=×=1,则BE=3,然后在Rt△AEB中,利用勾股定理可计算出AB=;由于AD=AB,∠DAB=90°,则把△APD绕点A顺时针旋转90°得到△AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到AP=AF,∠PAF=90°,PD=FB,则△APF为等腰直角三角形,得到∠APF=45°,PF=AP=×=2,即有∠BPF=∠APB+∠APF=45°+45°=90°,然后在Rt△FBP中,根据勾股定理可计算出FB的长,即可得到PD的长. 【解析】 过A点作AE⊥PB于E,如图, ∵∠APB=45°, ∴△APE为等腰直角三角形, ∴PE=AE=PA=×=1, ∵PB=4, ∴BE=PB-PE=4-1=3, 在Rt△AEB中,AB===; ∵AD=AB,∠DAB=90°, ∴把△APD绕点A顺时针旋转90°得到△AFB,AD与AB重合,PA旋转到AF的位置,如图, ∴AP=AF,∠PAF=90°,PD=FB, ∴△APF为等腰直角三角形, ∴∠APF=45°,PF=AP=×=2, ∴∠BPF=∠APB+∠APF=45°+45°=90°, 在Rt△FBP中,PB=4,PF=2, ∴FB===2, ∴PD=2, 所以AB和PD的长分别为、2.
复制答案
考点分析:
相关试题推荐
请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=manfen5.com 满分网,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为manfen5.com 满分网,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=manfen5.com 满分网,BP=manfen5.com 满分网,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
manfen5.com 满分网
查看答案
如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为______

manfen5.com 满分网 查看答案
D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F.
(1)当∠MDN绕点D转动时,求证:DE=DF.
(2)若AB=2,求四边形DECF的面积.

manfen5.com 满分网 查看答案
manfen5.com 满分网正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
查看答案
四边形ABCD中,AB=BC,∠ABC=60度,∠ADC=120度,求证:BD=AD+CD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.