满分5 > 初中数学试题 >

已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点. (1)求...

已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
(1)求b的值;
(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
(1)根据对称轴的定义观察点P(-3,m)和Q(1,m)纵坐标相同,求出对称轴,从而求出b值; (2)把b值代入一元二次方程,根据方程的判别式来判断方程是否有根; (3)先将抛物线向上平移,在令y=0,得到一个新方程,此方程无根,令△<0,解出k的范围,从而求出k的最小值. 【解析】 (1)∵点P、Q在抛物线上且纵坐标相同, ∴P、Q关于抛物线对称轴对称并且到对称轴距离相等. ∴抛物线对称轴, ∴b=4. (2)由(1)可知,关于x的一元二次方程为2x2+4x+1=0. ∵△=b2-4ac=16-8=8>0, ∴方程有实根, ∴x===-1±; (3)由题意将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点, ∴设为y=2x2+4x+1+k, ∴方程2x2+4x+1+k=0没根, ∴△<0, ∴16-8(1+k)<0, ∴k>1, ∵k是正整数, ∴k的最小值为2.
复制答案
考点分析:
相关试题推荐
如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.
(1)求⊙O的半径;
(2)求证:CE=BE.

manfen5.com 满分网 查看答案
如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径;求证:∠BAM=∠CAP.

manfen5.com 满分网 查看答案
已知抛物线 y=ax2+bx+c经过点A(0,3),B(4,3),C(1,O).求:
(1)该抛物线的解析式;
(2)它的图象的顶点坐标,对称轴方程;
(3)y<0时x的取值范围.
查看答案
已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=manfen5.com 满分网∠BAD.

manfen5.com 满分网 查看答案
一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.
(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?
(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当2个小球的颜色相同时,小王赢;当2个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.