满分5 >
初中数学试题 >
某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ) A.(2,-3...
某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)
考点分析:
相关试题推荐
在平面直角坐标系xoy中,点C,B的坐标分别为(-4,0),(0,2).四边形ABCO是平行四边形,抛物线过A,B,C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P,B,O为顶点的三角形与以点Q,B,O为顶点的三角形相似?
查看答案
“家友超市”购进一批成本价20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系式.
(1)试求出y与x的函数关系式;
(2)设“家友超市”销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4420元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围.
查看答案
如图,AB=2AC,BD=2AE,又BD∥AC,点B,A,E在同一条直线上.
(1)求证:△ABD∽△CAE;
(2)如果AC=BD,AD=
BD,设BD=m,求BC的长.
查看答案
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.
查看答案
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:
≈1.41,
≈1.73,
≈2.24,
≈2.45)
查看答案