满分5 >
初中数学试题 >
设d是⊙O1与⊙O2的圆心距,r1,r2(r1>r2)分别是⊙O1和⊙O2的半径...
设d是⊙O1与⊙O2的圆心距,r1,r2(r1>r2)分别是⊙O1和⊙O2的半径,则
⊙O1与⊙O2外离⇔d ;
⊙O1与⊙O2外切⇔d ;
⊙O1与⊙O2相交⇔d ;
⊙O1与⊙O2内切⇔d ;
⊙O1与⊙O2内含⇔d ;
⊙O1与⊙O2为同心圆⇔d .
考点分析:
相关试题推荐
的两个圆叫做这两个圆相切.这个公共点叫做
.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的
,叫做这两个圆外切;如果其中有一个圆(除切点外)在另一个圆的
,叫做这两个圆内切.
查看答案
如图1,已知双曲线
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为______;
(2)如图2,过原点O作另一条直线l,交双曲线
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
查看答案
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-
的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M
1在第二象限.
(1)如图所示,若反比例函数解析式为y=-
,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ
1M
1N
1,并写出点M
1的坐标;M
1的坐标是______.
(2)请你通过改变P点坐标,对直线M
1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M
1和点M的坐标.
查看答案
在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E.
(1)如图①,当∠A为锐角时,连接BE,试判断∠BAC与∠CBE的数量关系,并证明你的结论.
(2)图①中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图②,CA的延长线与⊙O相交于点E,请问:∠BAC与∠CBE的关系是否与(1)中你得出的关系相同?若相同,请加以证明;若不同,请说明理由.
查看答案
某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米
2)的反比例函数,其图象如图所示.(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
查看答案