考点分析:
相关试题推荐
的平方根是( )
A.4
B.±4
C.2
D.±2
查看答案
已知:在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,设∠BCD=a,以D为旋转中心,将腰DC逆时针旋转90°至DE,连接AE、CE.
(1)当a=45°时,求△EAD的面积;
(2)当a=30°时,求△EAD的面积;
(3)当0°<a<90°时,猜想△EAD的面积与α大小有何关系?若有关,写出△EAD的面积S与a的关系式;若无关,请证明结论.
查看答案
如图,⊙M的圆心在x轴上,与坐标轴交于A(0,
)、B(-1,0),抛物线
经过A、B两点.
(1)求抛物线的函数解析式;
(2)设抛物线的顶点为P.试判断点P与⊙M的位置关系,并说明理由;
(3)若⊙M与y轴的另一交点为D,则由线段PA、线段PD及弧ABD围成的封闭图形PABD的面积是多少?
查看答案
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取
,
)
查看答案
如图,AB是半圆O的直径,D是半圆上的一个动点,(D不与A、B 重合)以DA为一边作∠DAC,使∠DAC=∠B.
(1)求证:AC是半圆O的切线;
(2)过点O作OE∥BD交AC于E,交AD于F,且EF=4,AD=6,求BD的长.
查看答案