满分5 > 初中数学试题 >

在边长为2的正方形ABCD内求一点P,使得PA+PB+PC之和为最小,并求这个最...

在边长为2的正方形ABCD内求一点P,使得PA+PB+PC之和为最小,并求这个最小值及此时PA、PB、PC的大小.

manfen5.com 满分网
顺时针旋转△BPC60°,可得△PBE为等边三角形,若PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,求出AF的值即可. 【解析】 顺时针旋转△BPC60度,可得△PBE为等边三角形. 既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上, 即如图:可得最小PA+PB+PC=AF. 则由余弦定理,得 AF2=AB2+BF2-2AB•BFcos∠ABF =AB2+BC2-2AB•BCcos∠150° =22+22+2×2×2× =8+4, ∴AF==,即PA+PB+PC的最小值是+; 此时,PC=PA=,PB=+-=-.
复制答案
考点分析:
相关试题推荐
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案
复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
已知关于x的方程(m2-m)x2-2mx+1=0①有两个不相等的实数根.
(1)求m的取值范围:
(2)若m为整数,且m<3,a是方程①的一个根,求代数式manfen5.com 满分网的值.
查看答案
如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.