满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,A...

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).
(1)设△BPQ的面积为S,求S与t之间的函数关系;
(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?

manfen5.com 满分网
(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s=PM×QB=96-6t; (2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出; ②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出; ③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出. 【解析】 (1)过点P作PM⊥BC于M,则四边形PDCM为矩形. ∴PM=DC=12, ∵QB=16-t, ∴s=•QB•PM=(16-t)×12=96-6t(0≤t<16). (2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况: ①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得; ②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,即3t2-32t+144=0, 此时,△=(-32)2-4×3×144=-704<0, 所以此方程无解,∴BP≠BQ. ③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去). 综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.
复制答案
考点分析:
相关试题推荐
某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
查看答案
用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论并证明你的结论;
(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
manfen5.com 满分网
查看答案
已知直线l1过点A(4,-1),B(-4,-5),将直线l1绕坐标原点旋转180°后得到直线l2,点A的对应点为A1,点B的对应点为B1
(1)写出点A1和B1的坐标;
(2)求直线l2的解析式.
查看答案
先化简,再求值:manfen5.com 满分网,其中a=manfen5.com 满分网
查看答案
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.
(1)写出点A,C的坐标;
(2)求点A和点C之间的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.