满分5 > 初中数学试题 >

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,...

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:manfen5.com 满分网=manfen5.com 满分网
(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:MN2=DM•EN.
manfen5.com 满分网
(1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出=; (2)①根据三角形的面积公式求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长,根据等于高之比即可求出MN; ②可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)==,从而得出答案. (1)证明:在△ABQ和△ADP中, ∵DP∥BQ, ∴△ADP∽△ABQ, ∴=, 同理在△ACQ和△APE中, =, ∴=. (2)①作AQ⊥BC于点Q. ∵BC边上的高AQ=, ∵DE=DG=GF=EF=BG=CF ∴DE:BC=1:3 又∵DE∥BC, ∴AD:AB=1:3, ∴AD=,DE=, ∵DE边上的高为,MN:GF=:, ∴MN:=:, ∴MN=. 故答案为:. ②证明:∵∠B+∠C=90°∠CEF+∠C=90°, ∴∠B=∠CEF, 又∵∠BGD=∠EFC, ∴△BGD∽△EFC, ∴=, ∴DG•EF=CF•BG, 又∵DG=GF=EF, ∴GF2=CF•BG, 由(1)得==, ∴×=•, ∴()2=•, ∵GF2=CF•BG, ∴MN2=DM•EN.
复制答案
考点分析:
相关试题推荐
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
manfen5.com 满分网
查看答案
manfen5.com 满分网已知:如图,抛物线y=-x2+bx+c与x轴,y轴分别相交于点A(-1,0),B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
查看答案
已知:抛物线y=x2+(a-2)x-2a(a为常数,且a>0).
(1)求证:抛物线与x轴有两个交点;
(2)设抛物线与x轴的两个交点分别为A、B(A在B左侧),与y轴的交点为C.当manfen5.com 满分网时,求抛物线的解析式.
查看答案
已知:如图,在Rt△ABC中,∠C=90°,D、E分别为AB、AC边上的点,且manfen5.com 满分网,连接DE.若AC=3,AB=5,猜想DE与AB有怎样的位置关系?并证明你的结论.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,DE∥BC,AD+EC=9,DB=4,AE=5,求AD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.