考点分析:
相关试题推荐
设抛物线y=ax
2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______
查看答案
如图,BC是⊙O的直径,点A在圆上,且AB=AC=4. P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S
1、S
2.
①若S
1=S
2,求a的值;
②若S=S
1+S
2,是否存在一个实数a,使S<
?若存在,求出一个a的值;若不存在,说明理由.
查看答案
已知:如图,正方形ABCD的边长为2a,H是以BC为直径的半圆O上一点,过H与圆O相切的直线交AB于E,交CD于F.
(1)当点H在半圆上移动时,切线EF在AB、CD上的两个交点也分别在AB、CD上移动(E、A不重合,F、D不重合),试问:四边形AEFD的周长是否也在变化?证明你的结论;
(2)设△BOE的面积为S
1,△COF的面积为S
2,正方形ABCD的面积为S,且S
1+S
2=
S,求BE与CF的长.
查看答案
如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?
查看答案
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.
(1)该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
(2)该经营户要想每天盈利最大,应将每千克小型西瓜的售价降低多少元?
查看答案