如图,已知直线AB经过点C(1,2),与x轴、y轴分别交于A点、B点,CD⊥x轴于D,CE⊥y轴于E,CF与x轴交于F.
(1)当直线AB绕点C旋转到使△ACD≌△CBE时,求直线A8的解析式;
(2)若S
四边形ODCE=S
△CFD,当直线AB绕点C旋转到使FC⊥AB时,求BC的长;
(3)在(2)成立的情况下,将△FOG沿y轴对折得到△F′O′G′(F、0、G的对应点分别为F′、O′、G′),把△F′O′G′沿x轴正方向平移到使得点F′与点A重合,设在平移过程中△F′O′G′与四边形CDOE重叠的面积为y,OO′的长为x,求y与x的函数关系式及自变量x的取值范围.
查看答案
数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.
查看答案