满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0)...

如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).

满分5 manfen5.com

(1)求此抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.

①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;

②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.

当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)

 

(1)y=﹣x2﹣2x+3;(2)①点P(,)时,△PDE的周长最大;②当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2). 【解析】 试题分析:(1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解 答即可; (2)①根据点A、B的坐标求出OA=OB,从而得到△AOB是等腰直角三角形,根据等腰直角三角形的性质可得∠BAO=45°,然后求出△PED是等腰直角三角形,根据等腰直角三角形的性质,PD越大,△PDE的周长最大,再判断出当与直线AB平行的直线与抛物线只有一个交点时,PD最大,再求出直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式△=0列式求出m的值,再求出x、y的值,从而得到点P的坐标; ②先确定出抛物线的对称轴,然后(i)分点M在对称轴上时,过点P作PQ⊥对称轴于Q,根据同角的余角相等求出∠APF=∠QPM,再利用“角角边”证明△APF和△MPQ全等,根据全等三角形对应边相等可得PF=PQ,设点P的横坐标为n,表示出PQ的长,即PF,然后代入抛物线解析式计算即可得解;(ii)点N在对称轴上时,同理求出△APF和△ANQ全等,根据全等三角形对应边相等可得PF=AQ,根据点A的坐标求出点P的纵坐标,再代入抛物线解析式求出横坐标,即可得到点P的坐标. 试题解析:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0), ∴, 解得, 所以,抛物线的解析式为y=﹣x2﹣2x+3; (2)①∵A(﹣3,0),B(0,3), ∴OA=OB=3, ∴△AOB是等腰直角三角形, ∴∠BAO=45°, ∵PF⊥x轴, ∴∠AEF=90°﹣45°=45°, 又∵PD⊥AB, ∴△PDE是等腰直角三角形, ∴PD越大,△PDE的周长越大, 易得直线AB的解析式为y=x+3, 设与AB平行的直线解析式为y=x+m, 联立, 消掉y得,x2+3x+m﹣3=0, 当△=32﹣4×1×(m﹣3)=0, 即m=时,直线与抛物线只有一个交点,PD最长, 此时x=,y=+=, ∴点P(,)时,△PDE的周长最大; ②抛物线y=﹣x2﹣2x+3的对称轴为直线x=, (i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q, 在正方形APMN中,AP=PM,∠APM=90°, ∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°, ∴∠APF=∠QPM, ∵在△APF和△MPQ中, , ∴△APF≌△MPQ(AAS), ∴PF=PQ, 设点P的横坐标为n(n<0),则PQ=﹣1﹣n, 即PF=﹣1﹣n, ∴点P的坐标为(n,﹣1﹣n), ∵点P在抛物线y=﹣x2﹣2x+3上, ∴﹣n2﹣2n+3=﹣1﹣n, 整理得,n2+n﹣4=0, 解得n1=(舍去),n2=, ﹣1﹣n=﹣1﹣=, 所以,点P的坐标为(,); (ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q, ∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°, ∴∠FPA=∠QAN, 又∵∠PFA=∠AQN=90°,PA=AN, ∴△APF≌△NAQ, ∴PF=AQ, 设点P坐标为P(x,﹣x2﹣2x+3), 则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2, 解得x=﹣1(不合题意,舍去)或x=﹣﹣1, 此时点P坐标为(﹣﹣1,2). 综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2). 考点:二次函数综合题.
复制答案
考点分析:
相关试题推荐

已知:∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=满分5 manfen5.comCB,过程如下:过点C作CE⊥CB于点C,与MN交于点E

∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.

∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.

∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.

又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=满分5 manfen5.comCB.

又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=满分5 manfen5.comCB.

满分5 manfen5.com

(1)当MN绕A旋转到如图(2)和图(3)两个位置时,其它条件不变,则BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.

(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=满分5 manfen5.com时,则CB=__________.

 

查看答案

计算-32的结果为    (     )

   A、9         B、-9       C、6          D、-6

 

查看答案

实数a, b, c在数轴上大致位置如图,则a,b,c的大小关系是(   )

6ec8aac122bd4f6e

    A、a<b<c    B. a<c<b    C. b<c<a      D. 无法确定

 

查看答案

6ec8aac122bd4f6e,则6ec8aac122bd4f6e值为(    )

 A、3          B、-3            C、不确定          D、3或-3

 

查看答案

近似数0.0700的有效数字个数有(   )

A、4个          B、3个           C、2个              D、1个

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.