在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数( )
A、1 B、2 C、3 D、4
下列各式中,是最简二次根式的是( )
A、 B、 C、 D、
的值是( )
A.4 B.2 C.±2 D.
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.
已知抛物线过两点(m,0)、(n,0),且,抛物线于双曲线(x>0)的交点为(1,d).
(1)求抛物线与双曲线的解析式;
(2)已知点都在双曲线(x>0)上,它们的横坐标分别为,O为坐标原点,记,点Q在双曲线(x<0)上,过Q作QM⊥y轴于M,记。
求的值.
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?