为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45㎝,60㎝,且它们互相垂直,座杆CE的长为20 cm,点A,C ,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.
(结果精确到1 cm.参考数据: sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)
已知二次函数图象的顶点是(-1,2),且过点(0,).
(1)求二次函数的表达式,并在图中画出它的图象;
(2)判断点(2,)是否在该二次函数图象上;并指出当取何值时,?
如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB是⊙O上关于A、B的滑动角.若⊙O的半径是1,,则∠APB的取值范围为___________.
如图,这是当初中央电视台设计台徽时的模型,它是以正方形ABCD的每个顶点为圆心,每边长为半径画圆弧交于E、F、G、H、若边长AB=4cm,则点F到BC的距离是 围成的曲边四边形EFGH的周长是 .
在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转180°,所得抛物线的解析式为 .
如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 .