满分5 > 初中数学试题 >

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索. 【作业题】...

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.

【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

满分5 manfen5.com

小明和小聪经过交流,得到了如下的两种解决方法:

方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=满分5 manfen5.com

方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=满分5 manfen5.com,∴AB=满分5 manfen5.com

感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.

(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,满分5 manfen5.com),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

满分5 manfen5.com

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=满分5 manfen5.com,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

满分5 manfen5.com

 

 

(1);(2)①;②. 【解析】 试题分析:(1)根据方法一,延长OE交⊙O于点F,连接CF,即可得到∠F=60°,从而求出OC的长; (2)①根据方法一,容易求出y与x的关系,②由①知,EF是半径的倍,所以只需求出半径(或直径AD)的取值范围即可.由于D是BC边上的动点,故AD最大为AB=,最小为△ABC的边BC上的高. 试题解析:(1)∵tan∠OAB=,∴∠OAB-60°,延长OE交⊙O于点F,连接CF,∴∠F=∠OAB=60°,OF=4,∴OC=. (2)①∵∠ACB=75°,∠ABC=45°,∴∠BAC=60°,延长EO交⊙O于点G,连接GF, ∴∠G=∠BAC=60°,∵⊙O半径为x, EF为y,∴; ②作AH⊥BC,在Rt△ABH中,∵∠ABC=45°,∴BH=AH,∵AB=,AH=2,∵AD=EG=,∴2≤AD≤,即,∵,y随x的增大而增大,∴当x=1时,y最小,为. 考点:1.解直角三角形;2.圆周角定理;3.三角形内角和定理.
复制答案
考点分析:
相关试题推荐

定义:已知反比例函数满分5 manfen5.com满分5 manfen5.com,如果存在函数满分5 manfen5.com满分5 manfen5.com)则称函数满分5 manfen5.com为这两个函数的中和函数.

(1)试写出一对函数,使得它的中和函数为满分5 manfen5.com,并且其中一个函数满足:当满分5 manfen5.com时,满分5 manfen5.com满分5 manfen5.com的增大而增大.

(2) 函数满分5 manfen5.com满分5 manfen5.com的中和函数满分5 manfen5.com的图象和函数满分5 manfen5.com的图象相交于两点,试求当满分5 manfen5.com的函数值大于满分5 manfen5.com的函数值时满分5 manfen5.com的取值范围.

 

查看答案

为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45㎝,60㎝,且它们互相垂直,座杆CE的长为20 cm,点A,C ,E在同一条直线上,且∠CAB=75°,如图2.

满分5 manfen5.com

(1)求车架档AD的长;

(2)求车座点E到车架档AB的距离.

(结果精确到1 cm.参考数据: sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)

 

查看答案

已知二次函数图象的顶点是(-1,2),且过点(0,满分5 manfen5.com).

满分5 manfen5.com

(1)求二次函数的表达式,并在图中画出它的图象;

(2)判断点(2,满分5 manfen5.com)是否在该二次函数图象上;并指出当满分5 manfen5.com取何值时,满分5 manfen5.com

 

查看答案

如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB是⊙O上关于A、B的滑动角.若⊙O的半径是1,满分5 manfen5.com,则∠APB的取值范围为___________.

满分5 manfen5.com

 

 

查看答案

如图,这是当初中央电视台设计台徽时的模型,它是以正方形ABCD的每个顶点为圆心,每边长为半径画圆弧交于E、F、G、H、若边长AB=4cm,则点F到BC的距离是         围成的曲边四边形EFGH的周长是           

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.