对下图的对称性表述,正确的是( )
A、轴对称图形
B、中心对称图形
C、既是轴对称图形又是中心对称图形
D、既不是轴对称图形又不是中心对称图形
已知x<1,则的化简的结果是 ( )
A.x-1 B. x+1 C.1-x D.-x-1
若是关于的一元二次方程的一个解,则的值是 ( )
A. 6 B. C. 5 D. 2
下列计算正确的是( )
A. B. C. D.
小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.
小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=;
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=.
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.
(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.
定义:已知反比例函数与,如果存在函数()则称函数为这两个函数的中和函数.
(1)试写出一对函数,使得它的中和函数为,并且其中一个函数满足:当时,随的增大而增大.
(2) 函数和的中和函数的图象和函数的图象相交于两点,试求当的函数值大于的函数值时的取值范围.