正比例函数的图象与反比例函数的图象有一个交点的坐标是(),则另一个交点的坐标为( )
A.() B.() C.() D.()
把二次函数配方成顶点式为( )
A. B. C. D.
函数的图象经过点,则的值为( )
A. B. C. D.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标,并求出此时的周长;
(3)在直线l上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.
锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).
(1)求△ABC中边BC上高AD;
(2)当x为何值时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元) |
50 |
53 |
56 |
59 |
62 |
65 |
月销售量(千克) |
420 |
360 |
300 |
240 |
180 |
120 |
该商品以每千克50元为售价,在此基础上设每千克的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?