如图,已知抛物线与直线交于点.点是抛物线上,之间的一个动点,过点分别作轴、轴的平行线与直线交于点,.
(1)求抛物线的函数解析式;
(2)若点的横坐标为2,求的长;
(3)以,为边构造矩形,设点的坐标为,求出之间的关系式.
如图,曲线是函数在第一象限内的图象,抛物线是函数的图象.点()在曲线上,且都是整数.
(1)求出所有的点;
(2)在中任取两点作直线,求所有不同直线的条数;
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧所在圆的圆心为,半径为3米.
(1)求的度数;
(2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米).
(第2小题的参考数据:取3.14)
如图,已知抛物线与轴交于点.
(1)平移该抛物线使其经过点和点(2,0),求平移后的抛物线解析式;
(2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.
已知,一次函数的图象与反比例函数的图象都经过点.
(1)求的值及反比例函数的表达式;
(2)判断点是否在该反比例函数的图象上,请说明理由.
已知抛物线.
(1)通过配方,将抛物线的表达式写成的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.