满分5 > 初中数学试题 >

如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延...

如图,抛物线满分5 manfen5.com与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.

满分5 manfen5.com

(1)求C点的坐标及抛物线的解析式;(6分)

(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(4分)

(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由. (4分)

 

(1);(2)点E落在抛物线上,理由见解析;(3)(,0)或(,0). 【解析】 试题分析:(1)由于CD∥x轴,因此C,D两点的纵坐标相同,那么C点的坐标就是(0,2),n=2,已知抛物线过D点,可将D的坐标代入抛物线的解析式中即可求出m的值,也就确定了抛物线的解析式;(2)由于旋转翻折只是图形的位置有变化,而大小不变,因此:△BCH≌△BEF,OC=BF,CH=EF.OC的长可以通过C点的坐标得出,求CH即OB的长,要先得出B点的坐标,可通过抛物线的解析式来求得.这样可得出E点的坐标,然后代入抛物线的解析式即可判断出E是否在抛物线上;(3)本题可先表示出直线PQ分梯形ABCD两部分的各自的面积,首先要得出P,Q的坐标,可先设出P点的坐标如:(a,0),由于直线PQ过E点,因此可根据P,E的坐标用待定系数法表示出直线PQ的解析式,进而可求出Q点的坐标,这样就能表示出BP,AP,CQ,DQ的长,也就能表示出梯形BPQC和梯形APQD的面积,然后分类进行讨论:①梯形BPQC的面积:梯形APQD的面积=1:3,②梯形APQD的面积:梯形BPQC的面积=1:3,根据上述两种不同的比例关系式,可求出各自的a的取值,也就能求出不同的P点的坐标,综上所述可求出符合条件的P点的坐标. 试题解析:(1)∵四边形OBHC为矩形,∴CD∥AB. 又D(5,2),∴C(0,2),OC=2. ∴,解得. ∴抛物线的解析式为:. (2)点E落在抛物线上,理由如下: 由y=0,得, 解得x1=1,x2=4. ∴A(4,0),B(1,0). ∴OA=4,OB=1. 由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°, 由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°, ∴点E的坐标为(3,-1). 把x=3代入,得, ∴点E在抛物线上. (3)存在点P(a,0). 记S梯形BCQP = S1,S梯形ADQP = S2,易求S梯形ABCD = 8. 当PQ经过点F(3,0)时,易求S1=5,S2 = 3,此时S1∶S2不符合条件,故a≠3. 设直线PQ的解析式为y = kx+b(k≠0),则,解得. ∴直线PQ的解析式为. 由y = 2得x = 3a-6,∴Q(3a-6,2) . ∴CQ = 3a-6,BP = a-1, . 下面分两种情形:①当S1∶S2 = 1∶3时,, ∴4a-7=2,解得; ②当S1∶S2 =3∶1时,, ∴4a-7=6,解得; 综上所述:所求点P的坐标为. (,0)或(,0) 考点:1.二次函数综合题;2.面动旋转问题;3. 矩形的性质;4.待定系数法;5.曲线上点的坐标与方程的关系;6.分类思想的应用.
复制答案
考点分析:
相关试题推荐

如图,已知点A (满分5 manfen5.com2,4) 和点B (1,0)都在抛物线满分5 manfen5.com上.

满分5 manfen5.com

(1)求m、n;

(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;

(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

 

查看答案

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

满分5 manfen5.com

(1)如图①,对△ABC作变换[60°,满分5 manfen5.com]得△AB′C′,则SAB′C′:SABC=____;直线BC与直线B′C′所夹的锐角为______度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

 

查看答案

如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数满分5 manfen5.com图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.

满分5 manfen5.com

(1)求证:线段AB为⊙P的直径;

(2)求△AOB的面积;

(3)如图2,Q是反比例函数满分5 manfen5.com图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D,求证:DO·OC=BO·OA.

 

查看答案

为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:满分5 manfen5.com. 设这种产品每天的销售利润为w元.

(1)求w与x之间的函数关系式;

(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

 

查看答案

国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:满分5 manfen5.com=1.7,满分5 manfen5.com=1.4).

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.