如图所示,是的内接三角形,, 为中弧AB上一点,延长至点,使.
(1)求证:;
(2)若,求证:.
已知A、B、C是半径为2的圆O上的三个点,其中点A是弧BC的中点,连接AB、AC,点D、E分别在弦AB、AC上,且满足AD=CE.
(1)求证:OD=OE;
(2)连接BC,当BC=时,求∠DOE的度数.
如图,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的内切圆,点P从点B开始沿BC边向C以1cm/s的速度移动,点Q从C点开始沿CA边向点A以2cm/s的速度移动。
(1)求⊙O的半径;
(2)若P、Q分别从B、C同时出发,当Q移动到A时,P点与⊙O是什么位置关系?
(3)若P、Q分别从B、C同时出发,当Q移动到A时,移动停止,则经过几秒,△PCQ的面积等于5cm2?
如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D。
(1)求证:AC平分∠DAB;
(2)连接BC,证明∠ACD=∠ABC;
(3)若AB=12cm,∠ABC=60°,求CD的长。
如图,利用一面墙(长度不限),用24m长的篱笆,怎样围成一个面积为70m2的长方形场地?能围成一个面积为80m2的长方形场地吗?为什么?
第一个布袋内装有红、白两种颜色的小球(大小形状相同)共4个,从袋内摸出1个球是红球的概率是0.5;第二个布袋内装有红、黑两种颜色的小球(大小形状相同)共4个,重复从袋内摸出1个球是红球的频率稳定在0.25。用列举法求:从两个布袋内各摸出一个球颜色不相同的概率。