一元二次方程的二次项系数、一次项系数、常数项分别是( )
A.3,2,1 B.3,-2,1 C.3,-2,-1 D.-3,2,1
已知:抛物线与x轴的两个交点分别为A(1,0)和B(3,0),与y轴交于点C.
(1)求此二次函数的解析式;
(2)写出点C的坐标________,顶点D的坐标为__________;
(3)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式;
(4)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,请直接写出所有满足条件的E点的坐标__________________________________(不必写出过程).
如图,AB是⊙O的直径,AC是弦.
(1)请你按下面步骤画图(画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑);
第一步,过点A作∠BAC的角平分线,交⊙O于点D;
第二步,过点D作AC的垂线,交AC的延长线于点E.
第三步,连接BD.
(2)求证:DE是⊙O的切线;
(3)如图AD=5,AE=4,求⊙O的直径.
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E.
(1)证明△PAE∽△CDP;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,设AP=x,BE=y,求y与x的函数关系式及y的取值范围;
(3)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由.
如图,P1是反比例函数在第一象限图象上的一点,已知△P1O A1为等边三角形,点A1 的坐标为(2,0).
(1)直接写出点P1的坐标;
(2)求此反比例函数的解析式;
(3)若△P2A1A2为等边三角形,求点A2的坐标.
某市为落实房地产调控政策,加快了廉租房的建设力度.第一年投资2亿元人民币建设了廉租房8万平方米,累计连续三年共投资9.5亿元人民币建设廉租房.设每年投资的增长率均为.
(1)求每年投资的增长率;
(2)若每年建设成本不变,求第三年建设了多少万平方米廉租房.