下列方程是关于x的一元二次方程的是( );
A. B. C. D.
计算得( )
A. B. C. D.17
的相反数是( )
A. B. C. D.
如图,已知:为边长是的等边三角形,四边形为边长是6的正方形. 现将等边和正方形按如图①的方式摆放,使点与点重合,点、、在同一条直线上,从图①的位置出发,以每秒1个单位长度的速度沿方向向右匀速运动,当点与点重合时暂停运动,设的运动时间为秒().
(1)在整个运动过程中,设等边和正方形重叠部分的面积为,请直接写出与之间的函数关系式;
(2)如图②,当点与点重合时,作的角平分线交于点,将绕点逆时针旋转,使边与边重合,得到. 在线段上是否存在点,使得为等腰三角形. 如果存在,求线段的长度;若不存在,请说明理由.
(3)如图③,若四边形为边长是的正方形,的移动速度为每秒 个单位长度,其余条件保持不变. 开始移动的同时,点从点开始,沿折线以每秒个单位长度开始移动,停止运动时,点也停止运动. 设在运动过程中,交折线于点,则当时,求的值.
如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.
(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?
如图,梯形ABCD中,AD//BC,E为CD边的中点,F为AD延长线上一点,且满足DF+BF=BC.
(1)若∠A=90º,AD=3,AB=5,BC=9,求BE的长;
(2)求证:BE平分∠FBC.